3.11 \(\int x (a+b x)^2 \sin (c+d x) \, dx\)

Optimal. Leaf size=135 \[ \frac {a^2 \sin (c+d x)}{d^2}-\frac {a^2 x \cos (c+d x)}{d}+\frac {4 a b \cos (c+d x)}{d^3}+\frac {4 a b x \sin (c+d x)}{d^2}-\frac {2 a b x^2 \cos (c+d x)}{d}-\frac {6 b^2 \sin (c+d x)}{d^4}+\frac {6 b^2 x \cos (c+d x)}{d^3}+\frac {3 b^2 x^2 \sin (c+d x)}{d^2}-\frac {b^2 x^3 \cos (c+d x)}{d} \]

[Out]

4*a*b*cos(d*x+c)/d^3+6*b^2*x*cos(d*x+c)/d^3-a^2*x*cos(d*x+c)/d-2*a*b*x^2*cos(d*x+c)/d-b^2*x^3*cos(d*x+c)/d-6*b
^2*sin(d*x+c)/d^4+a^2*sin(d*x+c)/d^2+4*a*b*x*sin(d*x+c)/d^2+3*b^2*x^2*sin(d*x+c)/d^2

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {6742, 3296, 2637, 2638} \[ \frac {a^2 \sin (c+d x)}{d^2}-\frac {a^2 x \cos (c+d x)}{d}+\frac {4 a b x \sin (c+d x)}{d^2}+\frac {4 a b \cos (c+d x)}{d^3}-\frac {2 a b x^2 \cos (c+d x)}{d}+\frac {3 b^2 x^2 \sin (c+d x)}{d^2}-\frac {6 b^2 \sin (c+d x)}{d^4}+\frac {6 b^2 x \cos (c+d x)}{d^3}-\frac {b^2 x^3 \cos (c+d x)}{d} \]

Antiderivative was successfully verified.

[In]

Int[x*(a + b*x)^2*Sin[c + d*x],x]

[Out]

(4*a*b*Cos[c + d*x])/d^3 + (6*b^2*x*Cos[c + d*x])/d^3 - (a^2*x*Cos[c + d*x])/d - (2*a*b*x^2*Cos[c + d*x])/d -
(b^2*x^3*Cos[c + d*x])/d - (6*b^2*Sin[c + d*x])/d^4 + (a^2*Sin[c + d*x])/d^2 + (4*a*b*x*Sin[c + d*x])/d^2 + (3
*b^2*x^2*Sin[c + d*x])/d^2

Rule 2637

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int x (a+b x)^2 \sin (c+d x) \, dx &=\int \left (a^2 x \sin (c+d x)+2 a b x^2 \sin (c+d x)+b^2 x^3 \sin (c+d x)\right ) \, dx\\ &=a^2 \int x \sin (c+d x) \, dx+(2 a b) \int x^2 \sin (c+d x) \, dx+b^2 \int x^3 \sin (c+d x) \, dx\\ &=-\frac {a^2 x \cos (c+d x)}{d}-\frac {2 a b x^2 \cos (c+d x)}{d}-\frac {b^2 x^3 \cos (c+d x)}{d}+\frac {a^2 \int \cos (c+d x) \, dx}{d}+\frac {(4 a b) \int x \cos (c+d x) \, dx}{d}+\frac {\left (3 b^2\right ) \int x^2 \cos (c+d x) \, dx}{d}\\ &=-\frac {a^2 x \cos (c+d x)}{d}-\frac {2 a b x^2 \cos (c+d x)}{d}-\frac {b^2 x^3 \cos (c+d x)}{d}+\frac {a^2 \sin (c+d x)}{d^2}+\frac {4 a b x \sin (c+d x)}{d^2}+\frac {3 b^2 x^2 \sin (c+d x)}{d^2}-\frac {(4 a b) \int \sin (c+d x) \, dx}{d^2}-\frac {\left (6 b^2\right ) \int x \sin (c+d x) \, dx}{d^2}\\ &=\frac {4 a b \cos (c+d x)}{d^3}+\frac {6 b^2 x \cos (c+d x)}{d^3}-\frac {a^2 x \cos (c+d x)}{d}-\frac {2 a b x^2 \cos (c+d x)}{d}-\frac {b^2 x^3 \cos (c+d x)}{d}+\frac {a^2 \sin (c+d x)}{d^2}+\frac {4 a b x \sin (c+d x)}{d^2}+\frac {3 b^2 x^2 \sin (c+d x)}{d^2}-\frac {\left (6 b^2\right ) \int \cos (c+d x) \, dx}{d^3}\\ &=\frac {4 a b \cos (c+d x)}{d^3}+\frac {6 b^2 x \cos (c+d x)}{d^3}-\frac {a^2 x \cos (c+d x)}{d}-\frac {2 a b x^2 \cos (c+d x)}{d}-\frac {b^2 x^3 \cos (c+d x)}{d}-\frac {6 b^2 \sin (c+d x)}{d^4}+\frac {a^2 \sin (c+d x)}{d^2}+\frac {4 a b x \sin (c+d x)}{d^2}+\frac {3 b^2 x^2 \sin (c+d x)}{d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.22, size = 87, normalized size = 0.64 \[ \frac {\left (a^2 d^2+4 a b d^2 x+3 b^2 \left (d^2 x^2-2\right )\right ) \sin (c+d x)-d \left (a^2 d^2 x+2 a b \left (d^2 x^2-2\right )+b^2 x \left (d^2 x^2-6\right )\right ) \cos (c+d x)}{d^4} \]

Antiderivative was successfully verified.

[In]

Integrate[x*(a + b*x)^2*Sin[c + d*x],x]

[Out]

(-(d*(a^2*d^2*x + b^2*x*(-6 + d^2*x^2) + 2*a*b*(-2 + d^2*x^2))*Cos[c + d*x]) + (a^2*d^2 + 4*a*b*d^2*x + 3*b^2*
(-2 + d^2*x^2))*Sin[c + d*x])/d^4

________________________________________________________________________________________

fricas [A]  time = 0.71, size = 95, normalized size = 0.70 \[ -\frac {{\left (b^{2} d^{3} x^{3} + 2 \, a b d^{3} x^{2} - 4 \, a b d + {\left (a^{2} d^{3} - 6 \, b^{2} d\right )} x\right )} \cos \left (d x + c\right ) - {\left (3 \, b^{2} d^{2} x^{2} + 4 \, a b d^{2} x + a^{2} d^{2} - 6 \, b^{2}\right )} \sin \left (d x + c\right )}{d^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x+a)^2*sin(d*x+c),x, algorithm="fricas")

[Out]

-((b^2*d^3*x^3 + 2*a*b*d^3*x^2 - 4*a*b*d + (a^2*d^3 - 6*b^2*d)*x)*cos(d*x + c) - (3*b^2*d^2*x^2 + 4*a*b*d^2*x
+ a^2*d^2 - 6*b^2)*sin(d*x + c))/d^4

________________________________________________________________________________________

giac [A]  time = 0.75, size = 95, normalized size = 0.70 \[ -\frac {{\left (b^{2} d^{3} x^{3} + 2 \, a b d^{3} x^{2} + a^{2} d^{3} x - 6 \, b^{2} d x - 4 \, a b d\right )} \cos \left (d x + c\right )}{d^{4}} + \frac {{\left (3 \, b^{2} d^{2} x^{2} + 4 \, a b d^{2} x + a^{2} d^{2} - 6 \, b^{2}\right )} \sin \left (d x + c\right )}{d^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x+a)^2*sin(d*x+c),x, algorithm="giac")

[Out]

-(b^2*d^3*x^3 + 2*a*b*d^3*x^2 + a^2*d^3*x - 6*b^2*d*x - 4*a*b*d)*cos(d*x + c)/d^4 + (3*b^2*d^2*x^2 + 4*a*b*d^2
*x + a^2*d^2 - 6*b^2)*sin(d*x + c)/d^4

________________________________________________________________________________________

maple [B]  time = 0.03, size = 281, normalized size = 2.08 \[ \frac {\frac {b^{2} \left (-\left (d x +c \right )^{3} \cos \left (d x +c \right )+3 \left (d x +c \right )^{2} \sin \left (d x +c \right )-6 \sin \left (d x +c \right )+6 \left (d x +c \right ) \cos \left (d x +c \right )\right )}{d^{2}}+\frac {2 a b \left (-\left (d x +c \right )^{2} \cos \left (d x +c \right )+2 \cos \left (d x +c \right )+2 \left (d x +c \right ) \sin \left (d x +c \right )\right )}{d}-\frac {3 b^{2} c \left (-\left (d x +c \right )^{2} \cos \left (d x +c \right )+2 \cos \left (d x +c \right )+2 \left (d x +c \right ) \sin \left (d x +c \right )\right )}{d^{2}}+a^{2} \left (\sin \left (d x +c \right )-\left (d x +c \right ) \cos \left (d x +c \right )\right )-\frac {4 a b c \left (\sin \left (d x +c \right )-\left (d x +c \right ) \cos \left (d x +c \right )\right )}{d}+\frac {3 b^{2} c^{2} \left (\sin \left (d x +c \right )-\left (d x +c \right ) \cos \left (d x +c \right )\right )}{d^{2}}+a^{2} c \cos \left (d x +c \right )-\frac {2 a b \,c^{2} \cos \left (d x +c \right )}{d}+\frac {b^{2} c^{3} \cos \left (d x +c \right )}{d^{2}}}{d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(b*x+a)^2*sin(d*x+c),x)

[Out]

1/d^2*(1/d^2*b^2*(-(d*x+c)^3*cos(d*x+c)+3*(d*x+c)^2*sin(d*x+c)-6*sin(d*x+c)+6*(d*x+c)*cos(d*x+c))+2/d*a*b*(-(d
*x+c)^2*cos(d*x+c)+2*cos(d*x+c)+2*(d*x+c)*sin(d*x+c))-3/d^2*b^2*c*(-(d*x+c)^2*cos(d*x+c)+2*cos(d*x+c)+2*(d*x+c
)*sin(d*x+c))+a^2*(sin(d*x+c)-(d*x+c)*cos(d*x+c))-4/d*a*b*c*(sin(d*x+c)-(d*x+c)*cos(d*x+c))+3/d^2*b^2*c^2*(sin
(d*x+c)-(d*x+c)*cos(d*x+c))+a^2*c*cos(d*x+c)-2/d*a*b*c^2*cos(d*x+c)+1/d^2*b^2*c^3*cos(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.75, size = 259, normalized size = 1.92 \[ \frac {a^{2} c \cos \left (d x + c\right ) + \frac {b^{2} c^{3} \cos \left (d x + c\right )}{d^{2}} - \frac {2 \, a b c^{2} \cos \left (d x + c\right )}{d} - {\left ({\left (d x + c\right )} \cos \left (d x + c\right ) - \sin \left (d x + c\right )\right )} a^{2} - \frac {3 \, {\left ({\left (d x + c\right )} \cos \left (d x + c\right ) - \sin \left (d x + c\right )\right )} b^{2} c^{2}}{d^{2}} + \frac {4 \, {\left ({\left (d x + c\right )} \cos \left (d x + c\right ) - \sin \left (d x + c\right )\right )} a b c}{d} + \frac {3 \, {\left ({\left ({\left (d x + c\right )}^{2} - 2\right )} \cos \left (d x + c\right ) - 2 \, {\left (d x + c\right )} \sin \left (d x + c\right )\right )} b^{2} c}{d^{2}} - \frac {2 \, {\left ({\left ({\left (d x + c\right )}^{2} - 2\right )} \cos \left (d x + c\right ) - 2 \, {\left (d x + c\right )} \sin \left (d x + c\right )\right )} a b}{d} - \frac {{\left ({\left ({\left (d x + c\right )}^{3} - 6 \, d x - 6 \, c\right )} \cos \left (d x + c\right ) - 3 \, {\left ({\left (d x + c\right )}^{2} - 2\right )} \sin \left (d x + c\right )\right )} b^{2}}{d^{2}}}{d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x+a)^2*sin(d*x+c),x, algorithm="maxima")

[Out]

(a^2*c*cos(d*x + c) + b^2*c^3*cos(d*x + c)/d^2 - 2*a*b*c^2*cos(d*x + c)/d - ((d*x + c)*cos(d*x + c) - sin(d*x
+ c))*a^2 - 3*((d*x + c)*cos(d*x + c) - sin(d*x + c))*b^2*c^2/d^2 + 4*((d*x + c)*cos(d*x + c) - sin(d*x + c))*
a*b*c/d + 3*(((d*x + c)^2 - 2)*cos(d*x + c) - 2*(d*x + c)*sin(d*x + c))*b^2*c/d^2 - 2*(((d*x + c)^2 - 2)*cos(d
*x + c) - 2*(d*x + c)*sin(d*x + c))*a*b/d - (((d*x + c)^3 - 6*d*x - 6*c)*cos(d*x + c) - 3*((d*x + c)^2 - 2)*si
n(d*x + c))*b^2/d^2)/d^2

________________________________________________________________________________________

mupad [B]  time = 4.76, size = 128, normalized size = 0.95 \[ \frac {3\,b^2\,x^2\,\sin \left (c+d\,x\right )}{d^2}-\frac {b^2\,x^3\,\cos \left (c+d\,x\right )}{d}-\frac {\sin \left (c+d\,x\right )\,\left (6\,b^2-a^2\,d^2\right )}{d^4}+\frac {4\,a\,b\,\cos \left (c+d\,x\right )}{d^3}+\frac {x\,\cos \left (c+d\,x\right )\,\left (6\,b^2-a^2\,d^2\right )}{d^3}-\frac {2\,a\,b\,x^2\,\cos \left (c+d\,x\right )}{d}+\frac {4\,a\,b\,x\,\sin \left (c+d\,x\right )}{d^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*sin(c + d*x)*(a + b*x)^2,x)

[Out]

(3*b^2*x^2*sin(c + d*x))/d^2 - (b^2*x^3*cos(c + d*x))/d - (sin(c + d*x)*(6*b^2 - a^2*d^2))/d^4 + (4*a*b*cos(c
+ d*x))/d^3 + (x*cos(c + d*x)*(6*b^2 - a^2*d^2))/d^3 - (2*a*b*x^2*cos(c + d*x))/d + (4*a*b*x*sin(c + d*x))/d^2

________________________________________________________________________________________

sympy [A]  time = 1.37, size = 172, normalized size = 1.27 \[ \begin {cases} - \frac {a^{2} x \cos {\left (c + d x \right )}}{d} + \frac {a^{2} \sin {\left (c + d x \right )}}{d^{2}} - \frac {2 a b x^{2} \cos {\left (c + d x \right )}}{d} + \frac {4 a b x \sin {\left (c + d x \right )}}{d^{2}} + \frac {4 a b \cos {\left (c + d x \right )}}{d^{3}} - \frac {b^{2} x^{3} \cos {\left (c + d x \right )}}{d} + \frac {3 b^{2} x^{2} \sin {\left (c + d x \right )}}{d^{2}} + \frac {6 b^{2} x \cos {\left (c + d x \right )}}{d^{3}} - \frac {6 b^{2} \sin {\left (c + d x \right )}}{d^{4}} & \text {for}\: d \neq 0 \\\left (\frac {a^{2} x^{2}}{2} + \frac {2 a b x^{3}}{3} + \frac {b^{2} x^{4}}{4}\right ) \sin {\relax (c )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x+a)**2*sin(d*x+c),x)

[Out]

Piecewise((-a**2*x*cos(c + d*x)/d + a**2*sin(c + d*x)/d**2 - 2*a*b*x**2*cos(c + d*x)/d + 4*a*b*x*sin(c + d*x)/
d**2 + 4*a*b*cos(c + d*x)/d**3 - b**2*x**3*cos(c + d*x)/d + 3*b**2*x**2*sin(c + d*x)/d**2 + 6*b**2*x*cos(c + d
*x)/d**3 - 6*b**2*sin(c + d*x)/d**4, Ne(d, 0)), ((a**2*x**2/2 + 2*a*b*x**3/3 + b**2*x**4/4)*sin(c), True))

________________________________________________________________________________________